Subsidence of normal oceanic lithosphere, apparent thermal expansivity, and seafloor flattening

نویسندگان

  • Tomoko Korenaga
  • Jun Korenaga
چکیده

Seafloor topography has been a key observational constraint on the thermal evolution of oceanic lithosphere, which is the top boundary layer of convection in Earth's mantle. At least for the first ~70 Myr, the age progression of seafloor depth is known to follow the prediction of half-space cooling, and the subsidence rate is commonly believed to be ~350 m Ma. Here we show that, based on a new statistical analysis of global bathymetry, the average subsidence rate of normal oceanic lithosphere is likely to be ~320 m Ma, i.e., ~10% lower than the conventional value. We define the ‘normal’ seafloor as regions uncorrelated with anomalous crust such as hotspots and oceanic plateaus, but the lower subsidence rate appears to be a stable estimate, not depending on how exactly we define the normal seafloor. This low subsidence rate can still be explained by half-space cooling with realistic mantle properties, if the effective thermal expansivity of a viscoelastic mantle is taken into account. In light of a revised model of half-space cooling, the normal seafloor unperturbed by the emplacement of anomalous crust exists for all ages, and the so-called seafloor flattening seems to be mostly caused by hotspots and oceanic plateaus. © 2008 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective thermal expansivity of Maxwellian oceanic lithosphere

The thermal expansivity of oceanic lithosphere is a key mineral physics parameter that controls the rate of seafloor subsidence. Because of strongly temperature-dependent mantle rheology, effective expansivity for lithosphere as a whole could be substantially lower than indicated by mineral physics data. Viscoelastic modeling indicates that this reduction in expansivity could be as high as ∼15–...

متن کامل

Effects of compositional and rheological stratifications on small-scale convection under the oceans: Implications for the thickness of oceanic lithosphere and seafloor flattening

[1] Pressure-release melting at mid-ocean ridges generate compositional and rheological layering in the oceanic mantle that may control the evolution of the oceanic lithosphere. We use dynamic models coupled with melting and petrological models to explore 1) the influence of this layering on the development of small-scale convection under the oceans, 2) its role in determining the thickness of ...

متن کامل

Relationship between depth and age in the North Pacific Ocean

[1] The North Pacific contains active mid-oceanic ridges and the oldest, Jurassic (166.8 ± 4 Ma), drilled oceanic crust. Its bathymetry is therefore critical to studies of the applicability of thermal contraction models (e.g., the infinite half-space and cooling plate) to the subsidence of seafloor with crustal age. The bathymetry, however, contains seamounts and oceanic islands (e.g., Mid-Paci...

متن کامل

Convection Beneath Young Oceanic Lithosphere: Implications for Thermal Structure and Gravity

Small-scale convection under the oceanic lithosphere which begins in the first 5 m.y. of cooling can produce a gravity signal with the amplitude and wavelength observed for large areas of the central Pacific and southern Indian oceans using Seasat altimeter data. The trend of the observed anomalies is parallel to the direction of plate motion as might be expected if they were produced by small-...

متن کامل

Horizontal thermal contraction of oceanic lithosphere: The ultimate limit to the rigid plate approximation

[1] There is a contradiction between two widely accepted pillars of global tectonics, (1) the central plate tectonic assumption of plate rigidity and (2) the explanation of the relief of the seafloor as being due to lithospheric subsidence from thermal contraction. Here we quantify the rate of predictable horizontal thermal contraction of the lithosphere using depth averages of widely accepted ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008